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Abstract 

Transfer between isomorphic domains was 
investigated. Thirty college undergraduate students 
learned two isomorphic artificial systems. One system 
was concrete in the sense that it was perceptually rich 
and dynamic, while the other was abstract, involving 
written symbols. The results show significant positive 
transfer from the abstract domain to the concrete 
domain and no significant transfer from the concrete 
to the abstract.  

Introduction 
One of the goals of successful learning is transfer, 

or the ability to apply acquired knowledge outside the 
learned situation. Although a desired outcome of 
learning, spontaneous transfer is notoriously difficult 
to achieve. In the past few decades, numerous studies 
document poor or non-existent spontaneous transfer 
across isomorphic situations (Ben-Zeev & Star, 2001; 
Gholson et al., 1997; Holyoak, Junn, & Billman, 
1984; Holyoak & Koh, 1987; Schoenfeld & 
Herrmann, 1982). Poor performance has been 
attributed to surface features distracting from 
underlying structure. 

Which aspects of the learning situation facilitate 
transfer? A widely held belief in the education 
community has been that learning and transfer of 
mathematical and scientific knowledge is facilitated 
by the use of concrete representations of more 
abstract mathematical and scientific principles.  In 
the past several decades, the use of concrete 
representations has been a growing part of the 
mathematics curriculum. Concrete representations 

include both physical manipulatives as well as 
specific instantiations of abstract concepts. They are 
often perceptually rich and meaningful. Mathematical 
concepts are traditionally represented in an abstract 
symbolic form, while applications of the mathematics 
to scientific and real-world scenarios can be thought 
of as concrete instances of the abstract concept.  

The National Council of Teachers of Mathematics 
(NCTM) reform movement launched in 1989 
promoted the role of such representations in the 
curriculum. For example, Dienes blocks (Dienes, 
1960) are used in elementary mathematics education 
to teach arithmetic and place value. Dienes blocks are 
concrete proportional representations of the base-ten 
number system. The belief of educators who use the 
blocks is that through their use, young children will 
not only be able to represent and execute arithmetic 
problems, but will also be able to gain insight into the 
structure of the base-ten number system (Fuson & 
Briars, 1990).  

Much support for the use of either concrete 
manipulatives or concretely situated applications in 
the learning of mathematics comes from 
constructivist educators. Cobb, Yackel, and Wood 
(1992) propose that students actively construct 
mathematical knowledge in social contexts. 
Furthermore, they suggest that topics which are 
applications of mathematics such as those from real-
world or scientific situations provide good initial 
instructional activities. That is, instruction of 
mathematical concepts should be initiated through 
applications of the mathematics as opposed to 
initiated in symbolic form.  



These approaches to learning and transfer seem to 
echo the Piagetian theory, according to which 
education should parallel the process of cognitive 
development, and the ability for abstraction is not 
achieved before the formal operational stage 
(Inhelder & Piaget, 1958). At the same time, 
children’s reasoning during the preceding stage (i.e., 
the concrete operational stage) was said to be limited 
to objects and physically possible situations. If 
learning parallels the process of development, then 
transfer from more concrete to more abstract 
representations should be more efficient than the 
reverse. 

However, there are strong reasons to doubt this 
view. First, it has been demonstrated that concrete, 
perceptually rich objects are more likely to be 
considered objects than symbols denoting other 
entities (DeLoache, 1987; 2000). In a series of 
studies by DeLoache and colleagues, very young 
children were shown the location of a toy in either a 
photograph or a physical model of a scale room.  
They were then asked to retrieve the toy from the 
actual room. Almost all (88%) of the children shown 
the photograph were able to make an errorless 
retrieval of the toy, while only 16% of the children 
shown the physical model were able to do so. When 
the model was placed behind a screen, children’s 
retrieval rate improved. Furthermore, slightly older 
children are very successful in this task. However, 
when older children were encouraged to play with the 
model, performance dropped significantly. These 
studies demonstrate that children have difficulty 
treating perceptually rich objects as symbols. 
Decreasing the salience of the object increased the 
ease of its symbolic use. 

Second, there is a large body of literature on 
analogy (analogy is variant of transfer of knowledge 
from one domain to another) indicating that 
properties that are not a part of to-be-learned 
knowledge (i.e., surface features) may hinder rather 
than facilitate learning (e.g., Ross, 1987; 1989).  

Third, there is recent evidence that there might be a 
competition between abstract and concrete 
representations of the same situation, and salient 
concrete representations may distract learners from 
more abstract regularities (Goldstone & Sakamoto, 
2003). 

Finally, there is evidence that transfer from abstract 
instantiations of knowledge may be in fact easier than 
transfer from concrete to abstract instantiations 
(Bassok & Holyoak, 1989). Bassok and Holyoak 
examined transfer between more abstract algebraic 
knowledge and more concrete physics knowledge, 
namely between arithmetic-progression problems and 
isomorphic constant-acceleration problems. High 
school and college students (who were unfamiliar 

with both of these domains) learned one of these 
topics and then were posed word problems involving 
the other topic. The measure of transfer was whether 
the learned method had been applied to the 
structurally isomorphic problems in the unstudied 
domain. Students who had learned arithmetic-
progression first easily and spontaneously applied the 
learned method to correctly solve constant-
acceleration problems. However, the students who 
learned the physics topic showed essentially no 
transfer of method to the arithmetic-progression 
problems. The results of this study suggest that 
transfer is more likely to occur from a more abstract 
instantiation to a concrete isomorph.  

While the Bassok and Holyoak study (1989) 
certainly implies that more transfer occurs from 
abstract to concrete domains, confounds in the study 
limit such a broad conclusion. The chosen topics in 
mathematics and physics, as any mathematical and 
physical topics, do not exist in isolation. Any 
individual has many associations with each, including 
related prior learning as well as attitudes and beliefs. 
Specifically, the amount of mathematics learned 
through elementary, middle, and high school is 
significantly more than the amount of physics 
learned. This disparity of learning most likely exists 
between mathematics and any of its isomorphic 
applications. Furthermore, through the course of 
education, students develop an expectation that 
mathematical concepts can effectively and 
appropriately be applied to other domains such as 
physics, chemistry, economics, to name just a few. It 
is doubtable that student have as strong expectations 
that scientific strategies can be used to solve purely 
mathematical problems.  

The purpose of this study was to investigate 
transfer across two isomorphic domains: one that 
used a set of abstract symbols, and another that used 
concrete perceptually-rich objects. To eliminate 
potential confounds stemming from prior knowledge, 
both domains were artificially constructed to be 
algebraic Abelian groups of order three. In other 
words, each is isomorphic to the integers under 
addition modulo three. Therefore, both domains 
included three classes of entities and a set of specific 
transformation rules described in Figure 1. The first, 
more abstract, domain (hereafter “Mathematics”) was 
presented to the participants as a symbolic language 
in which three types of symbols, denoted as , , 
and , combine to yield a resulting symbol. The 
combination of symbols is expressed as written 
statements such as ,  → . The second, more 
concrete, domain (hereafter “Science”) involved 
interactions between three-dimensional objects from 
three classes. The objects dynamically interact to 
form a resulting object. The appearance of the objects 



and interactions was designed to be dissimilar to any 
particular science. 

The goal of the reported experiment was to 
investigate transfer across the two isomorphic 
artificial domains. Transfer was measured by 
comparing average test scores on a given domain as a 
function of prior learning of another domain. 

Method 

Participants  
Participants in the experiment were undergraduate 

students from Ohio State University who received 
partial credit for an introductory psychology course. 
Thirty students participated in the experiment. Fifteen 
participants were in the math-then-science condition 
and fifteen were in the science-then-math condition. 
Information was presented to individual participants 
via computer. 

Materials and Design 
Materials included two sets of entities (i.e., abstract 

meaningless symbols and concrete, perceptually-rich 
objects), and a set of transformations rules (see Table 
1). 
 

Table 1. Example of stimuli and transformation 
rules across the two domains. 

 
 

   Mathematics             Science 
Elements            

        
 

     
 

Associativity 
 

For any elements x, y, z,:    
((x , y) , z)   is equivalent to (x , (y , z)) 

Commutativity For any elements x, y:  
x , y is equivalent to y , x 

Identity  There is an element, I, such that for 
any element, x:   x , I is equivalent to x 

Inverses For any element, x, there exists 
another element, y, such that:    
 x, y is equivalent to I 
 

 is the identity 
 

is the  
        identity 
 
 
Operands    Result 
 

 

 

   

Specific Rules: 

              
 

 ,   →  
 

 ,   →   

      
  

 

  

 

Information about each domain was given as a 
computer presentation. The training in both domains 
was essentially isomorphic. The rules of the domain, 
namely commutativity, associativity, and the rules 
governing specific elements, were explicitly stated. 

The experiment included four phases presented 
over one hour: (1) Training in domain X, (2) Test in 
domain X, (3) Training in domain Y, (4) Test in 
domain Y, with participants randomly assign to a 
particular order of learning (i.e., math-then-science or 
science-then-math). 

Training included introduction of transformation 
rules, followed by questions with feedback. Several 
detailed examples were given. Testing consisted of 
twenty multiple choice questions designed to 
measure recall of the given rules and deeper 
conceptual understanding of the system. For both 
domains, the test questions were completely 
isomorphic and were presented in the same order.  

The presentation of the two domains differed by 
storyline. The artificial mathematics was presented as 
a symbolic language discovered on an archaeological 
search. Symbols of different categories combine to 
yield a resulting symbol. The artificial science was 
explained to be a phenomenon observed on a planet 
outside of our solar system. Objects from different 
classes of shapes interact to form a resulting shape. 
The presentation of the artificial science included 
movie clips demonstrating the interactions. Two or 
more objects move toward each other. When they 
come in contact, an interaction occurs and results in a 
predictable object. 

Each subject was randomly assigned to one of two 
orders: math-then-science (M Sc) or science-then-
math (Sc M). Participants in the first group received 
training and testing in the artificial mathematics 
immediately followed by training and testing in the 
artificial science. Subjects in the second group 
received training and testing first in the science and 
then in the mathematics. Following training and 
testing in both domains, a brief interview was 
conducted.  

Students’ scores on the mathematics and science 
tests were recorded. They were also asked to rate the 
similarity of the two domains on a scale from one to 
five. A rating of one indicated that the domains are 
completely different and a rating of five indicated 
that the domains are structurally identical with 
different representations of the objects. 

Test scores for mathematics and science were 
compared across the two conditions, math-then-
science and science-then-math. Transfer due to 
mathematics first was taken to be the difference in 
the average science score for M Sc and the average 
science score for Sc M. In other words, transfer is 
the improvement in science score due to having 



previously learned the mathematics. Similarly, 
transfer due to science was taken to be the difference 
in average mathematics score for Sc M and the 
average mathematics score for M Sc.  

Procedure 
All training and testing was presented on a 

computer screen. Participants were tested in a quiet 
room in a lab by a female experimenter. They 
proceeded through training and testing at their own 
pace, and their responses were recorded by the 
researcher. After training and testing in both 
domains, a brief interview was conducted. 

Results and Discussion 
Students were able to learn the artificial 

mathematics and the artificial science. With the 
exception of one student, all test scores were 
significantly above chance (i.e., 7/20) in both math-
then-science and science-then-math conditions. The 
one student who had a science score of 9/20 was 
removed from the data analysis. This score is not 
significantly different than chance and is also greater 
than two standard deviations from the mean (mean = 
16.8, standard deviation = 2.8).  

All students indicated that they noticed similarities 
between the two topics. Under both conditions the 
students rated the domains as highly similar. On a 
similarity scale from one to five, the mean rating 
given by math-then-science participants was 4.4 (SD 
= .65). The mean rating given by science-then-math 
students was 4.6 (SD = .63). 

The data on transfer across the domains are 
presented in Figure 1. These data were subjected to a 
2 (Domain: Math vs. Science) by 2 (Order: Learned 
First vs. Learned Second) mixed ANOVA with 
Domain as a repeated measure.  The analysis 
revealed a significant Domain by Order interaction, F 
(1, 27) = 24.15, p < .0001.  At the same time, none of 
the main effects was significant, both ps > .28. 

Planned comparisons indicated that there was a 
significant difference in performance as a function of 
learning order. Students in the math-then-science 
condition performed significantly better on the 
science test than students in the science-then-math 
condition, independent-samples t (24) = 3.26, p<.01. 
However, there was no significant difference in 
mathematics scores across conditions, p > .229. 

 
 
 
 
 
 

Figure 1. Mean test scores for mathematics and 
science shown as first and second domain studied. 
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The higher average science score for the M  Sc 

group suggests that their prior knowledge of the 
mathematics improved their learning of the science. 
Therefore, significant transfer was found from the 
abstract symbolic domain to the concrete, but the 
reverse was not found. 

In order to understand why the symbolic 
representation promoted transfer, while the concrete 
representation did not, it is necessary to take a closer 
look at the process of transfer. Not only does transfer 
require recognition and mapping of analogous 
relational structure from a source domain to a target 
domain, the elements of the source domain need to 
act as symbols. In other words, the objects or aspects 
of the source domain need to act as placeholders that 
can refer to something else, namely the objects of the 
target domain. Concrete representations are 
perceptually rich and consequently engage the 
perceptual system. Perceptually rich representations 
can easily convey associated properties and overall 
similarity (Goldstone & Barsalou, 1998). However, 
the specific characteristics of objects or elements are 
often irrelevant to concepts. Maintaining dissociation 
between the relational structure and the 
characteristics of the given elements is often crucial 
to accurate analogical reasoning. The salience of 
surface attributes often misleads students in the 
course of problem solving by distracting them from 
the underlying structure (Ben-Zeev & Star, 2001; 
Gholson, Smither,  Buhrman, Duncan, & Pierce, 
1997; Holyoak, Junn, & Billman, 1984; Holyoak & 
Koh, 1987; Schoenfeld & Herrmann, 1982). 
Perceptual objects convey affordances that may be 
helpful, but may also be irrelevant to the underlying 
concepts.  

However, concrete representations may be 
beneficial under some conditions. For example 
Goldstone and colleagues (Goldstone, Son, & Patton, 
under review) have argued that maximum transfer 
occurs through “concreteness fading” where concrete 
representations progressively become idealized.      



The conclusions of their study were that transfer is 
promoted through multiple representations. 
Furthermore, the authors conclude that while 
idealized displays promote internal representation not 
deeply embedded in a single domain, concrete 
displays have the advantage of a strong intuitive link 
between the real world and the modeled world. In 
other words, concepts can get a partial free ride from 
familiar concrete instances. However, in the course of 
learning mathematics and science, there are many 
concepts for which obvious concrete models may not 
exist. In the absence of a familiar concrete model on 
which concepts can freeload, does an artificially 
constructed concrete representation have benefits 
over a symbolic representation?  

This notion of concepts getting a free ride from 
concrete representations as suggested by Goldstone 
and his colleagues is certainly appealing and is 
intuitively very reasonable. From a pedagogical 
perspective, there seems to be definite merit in 
concreteness fading provided that instructors do not 
allow learning to become deeply embedded in the 
concrete example. For students, the concept may 
become the concrete model and not the abstraction 
necessary for true understanding and transfer. 
Furthermore, many concepts may not have obvious 
and familiar representation in the real world. 
Mathematical concepts, by their very nature, are not 
bound to concrete contexts. Their transfer depends on 
attending to their relational structure and not salient 
surface features of a particular instance.  

The goal of this experiment was to take a closer 
look at the merits of abstraction and concreteness for 
transfer. The familiarity or intuitive link between the 
concrete model and the concept were intentionally 
removed. No significant transfer from the concrete to 
the abstract was found, while significant transfer 
from the abstract to the concrete was exhibited. 

Concrete representations may be difficult to treat 
as symbols in novel, complex concepts. Perceptually 
rich representations convey more information than 
leaner representations. As the degree of richness 
increases, it likely becomes more difficult to 
recognize the representation as an object itself as well 
as a reference to its intended referent. Successful 
transfer requires the elements of the source domain to 
be treated as symbols. Concrete representations 
engage the perceptual system. Rich percepts convey 
much information, a large portion of which is 
unrelated to a task in question. When that information 
correlates with the conceptual structure, learning may 
be facilitated. However, when the attributes are 
irrelevant to the concept, learners may not see the 
relevant analogy. Even when the analogy is 
perceived, it is difficult for rich percepts to be used as 
symbols, as demonstrated in this experiment. 

Participants in both the math-then-science and the 
science-then-math conditions recognized similarities 
between the domains. However, only the students 
who learned the symbolic mathematics prior to the 
concrete science were able to transfer information  
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