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Abstract 

The goal of this experiment was to investigate elementary 
school children’s ability to acquire basic fraction knowledge. 
The degree of concreteness of instantiations of proportions was 
varied between subjects.  First-grade children learned to label 
proportions of objects with fraction.  Proportions were 
presented either as concrete, colorful flowers or as generic 
black and white circles. Following instruction, participants 
were given a test of learning and an immediate or delayed test 
of transfer involving proportions of novel objects.  Those who 
learned with the generic materials scored higher on learning 
and transfer than those who learned with the concrete materials. 
Differences between learning conditions were attenuated for 
the delayed transfer test. These findings suggest that concrete, 
perceptually rich instantiations of fractions may hinder 
children’s acquisition of basic fraction knowledge in 
comparison to simple generic instantiations of fractions.  

Keywords: Psychology; Education; Learning, Transfer; 

Relations, Mathematics Education. 

Introduction 

 

Mathematical concepts are often difficult for children to 

acquire.  One response to this challenge is to introduce 

concepts to students through concrete instantiations which 

include perceptually rich, familiar material. The use of 

concrete material is widespread in education (see McNeil & 

Uttal, 2009 for discussion). Concrete instantiations of 

mathematics may involve familiar contexts and can be 

visually appealing and engaging.  For example, simple 

arithmetic concepts are often instantiated through sets of 

familiar objects, such as two apples plus three apples equals 

five apples.  Such material may spark interest in the learning 

task and maintain attention on the learning material.   

However, a primary goal of learning mathematics is the 

ability to apply mathematics to new situations. Therefore, 

successful acquisition of mathematical knowledge implies 

that the learner has not only acquired knowledge of the 

mathematical relations in the context of learning, but also 

has the ability to transfer the mathematical knowledge to 

novel isomorphic situations. There is evidence that concrete 

instantiations can hinder transfer of learning.  Adults who 

learned a novel mathematical concept from a generic, 

perceptually sparse instantiation were better able to transfer 

this knowledge to a novel isomorph than those who learned 

the same concept from a concrete instantiation (Kaminski, 

Sloutsky, & Heckler, 2008; Sloutsky, Kaminski, & Heckler, 

2005; see also Goldstone & Sakamoto, 2003; Goldstone & 

son, 2005 for related findings). 

In comparison to more abstract, generic instantiations, 

concrete instantiations of a given concept communicate 

more extraneous information. For example, a photograph of 

a person communicates more nonessential information than 

a simple stick figure drawing (see Kaminski & Sloutsky, 

2011 for a discussion).  Similarly, instantiating addition as 

the sum of apples communicates more information than 

instantiating it as the sum of tally marks.  This additional 

information (e.g. the appearance, taste, etc. of apples) is 

extraneous to the mathematics and may present an obstacle 

for learning for the following reason.  Mathematical 

concepts are defined by relational structure.  Relations are 

less salient than objects (e.g. Gentner, 1988). Instantiating 

mathematical concepts through concrete material, in 

comparison to a more generic format, may increase the 

salience of superficial aspects of the learning material and 

consequently divert the learner’s attention from the to-be-

learned relational structure (see Goldstone, Medin, & 

Gentner, 1991 for a similar argument regarding similarity 

judgments), thus hindering learning.  

Therefore, it appears that generic instantiations of 

mathematical concepts have an advantage over concrete 

instantiations with respect to transfer. However it could be 

argued that this advantage is limited to older learners.  After 

all, in educational practice, older students are expected to 

learn and reason with abstract instantiations including 

symbols, equations, and other standard notation. It may be 

that younger learners (e.g. elementary school students) may 

need concrete instantiations to begin to acquire abstract 

knowledge.   

In addition to the notion that concrete material may be 

more engaging for the learner, support for the use of 

concrete instantiations to teach abstract concepts to young 

children is often tied to theories of learning and 

development. Some developmental theories (Montessori, 

1917; Piaget, 1970) posit that young children’s thinking is 

inherently concrete and that they are not capable of 

reasoning about abstract concepts using symbols. According 
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to these theories, children proceed through developmental 

stages in which their reasoning becomes more abstract and 

less dependent on concrete material.  Other theories (e.g., 

Bruner, 1966) tie the ability to reason about abstract 

material not to developmental stages but to levels of 

knowledge.  From this perspective, all novices, regardless of 

age, would need concrete instantiations to begin to acquire 

knowledge of an abstract concept. Both accounts suggest 

that learning should begin by instantiating the mathematical 

concept through concrete, familiar material.  

However, if the difficulty transferring knowledge from 

concrete instantiations is due to extraneous information 

diverting attention from the relevant relational structure, 

then concrete instantiations may be at least as detrimental 

for children’s learning as they are for adults. Children have 

difficulty controlling their attentional focus and filtering 

irrelevant, potentially distracting information (Kemler, 

1982; Shepp & Swartz, 1976; Smith & Kemler, 1978, see 

also Hanania & Smith, 2010).  For example, Shepp and 

Swartz (1976) instructed 6- and 9-year-olds to sort items 

according to shape, with color being an irrelevant 

dimension. It was found that 6-year-olds (but not 9-year-

olds) were slower when color varied independently of shape 

than when color co-varied with shape or did not vary at all. 

Therefore, the task-irrelevant dimension affected 

performance of younger, but not older participants. 

There is also evidence that concrete, perceptually rich 

material can hinder preschool children’s ability to perform 

simple relational tasks in comparison to performance with 

generic material. One line of evidence comes from studies 

of children’s early symbol use. Successful symbol use 

requires the detection and transfer of common relations. For 

example, to effectively use a map as a symbol for a real 

location, one must recognize the common relations between 

entities on the map and their real-world analogs.  Two- and 

three-year-old children are more successful transferring 

location information from a picture to the real world than 

from a 3-dimensional scale model to the real world 

(DeLoache, 1995a, 1995b).  These findings suggest that 

preschool children have difficulty using concrete, 

perceptually rich objects as symbols than using less concrete 

objects as symbols.   

In addition, preschool children are better able to detect 

relations of monotonic increase and monotonic decrease in 

size between displays that involve simple perceptually 

sparse objects than concrete, perceptually rich objects 

(Gentner, Ratterman, Markman, & Kotovsky, 1995; 

Kaminski, & Sloutsky, 2010). It has also been demonstrated 

that kindergarten children are better able to recognize 

common proportions across displays of different objects 

when first given instruction with generic, perceptually 

sparse objects than when given instruction with concrete, 

perceptually rich objects (Kaminski & Sloutsky, 2009).  

Taken together there is evidence that concrete, perceptually 

rich material may hinder the recognition of relational 

structure for kindergarteners and preschool children.  

Less is known about how concreteness affects young 

school-aged children’s acquisition of relational knowledge 

that is part of standard mathematics content.  While concrete 

instantiations of mathematics may communicate distracting 

extraneous information, it is possible that school-aged 

children have developed sufficient inhibitory control to 

focus on the relevant relations and not be distracted by 

extraneous aspects of concrete material.  If this is the case, 

then concrete instantiations will not hinder learning of 

mathematical concepts and may even facilitate learning by 

making the material more interesting for children.  

However, while executive function is maturing throughout 

childhood, the complexity of the relations we expect 

children to learn is increasing.  

Higher-order mathematical concepts involve more 

complex relations than simpler mathematical concepts.  For 

example, the concept of addition is relationally more 

complex than the concept of set cardinality (i.e. the use of a 

natural number to represent the number of elements in a 

set).  Preschool children learn the concept of set cardinality, 

while school-age children learn the concept of addition 

which entails determining the cardinality of the union of two 

sets. Similarly, the concept of multiplication is relationally 

more complex than the concept of addition because 

multiplication is defined as repeated addition. It may be that 

when children reach a level of development at which they 

are capable of attending to some relations in the context of 

extraneous information, they may not be able to attend to 

more complex relations in the presence of the same 

extraneous information.  As a result, the acquisition of more 

complex relations from concrete instantiations may be more 

susceptible to diverted attention than acquisition of simpler 

relations.  Therefore, we propose that concreteness in the 

presence of more complex relations, such as arithmetic 

relations, can hinder knowledge acquisition in comparison 

to more generic instantiations of the same concepts.  

Overview 

The purpose of the present research was to test the 

hypothesis that concreteness of the learning material will 

hinder young school-aged children’s acquisition of 

mathematical knowledge.  The present study examined 

initial learning and subsequent transfer of basic fraction 

knowledge when instruction involved either a concrete, 

perceptually rich instantiation versus a generic, perceptually 

sparse instantiation.  First-grade students were taught to 

label proportions of discrete objects with fractions. Transfer 

was measured as students’ ability to label proportion of 

novel objects with fractions.  For half the participants, 

transfer was tested immediately after instruction. For the 

other half of participants, transfer was tested after a two-

week delay.  

1751



 

Experiment 

Method 

Participants Participants were 64 first-grade students 

recruited from middle-class, suburban schools in the 

Columbus, Ohio area (34 girls and 30 boys, M = 7.3 years, 

SD = .40 years). 

 
Materials and Design The experiment had a 2 (Learning 
condition: Concrete vs. Generic) by 2 (Transfer Test: 
Immediate vs. Delayed) between-subjects design. Participants 
were randomly assigned to one of the two learning conditions 
and one of the two transfer test times.  The timing of the 
transfer test was a between-subject factor to control for any 
potential testing effects on delayed transfer.  

The task was to label proportions of discrete objects with 
fractions.  The experiment had two phases. The first phase 
consisted of training and a test of learning.  Training 
consisted of four examples of how to label a proportion of 
objects with a fraction, followed by six questions with 
corrective feedback.  In the Generic condition, all training 
examples were proportions of black circles out of black and 
white circles. In the Concrete condition, all training examples 
were proportions as purple flowers out of purple and orange 
flowers.  Figure 1 presents one of the examples used in 
training for both the Generic and Concrete conditions.   

Following training, participants were given an eight-

question test of learning which presented novel proportions 

in the same format as the training (i.e. circles for the 

Generic condition and flowers for the Concrete condition). 

Questions were multiple-choice. Four questions presented a 

proportion and participants were asked to select a fraction 

that described the proportion.  The remaining four questions 

presented a fraction and participants were asked to select a 

collection of objects for which the proportion matched the 

fraction. Four response choices were given: (1) the correct 

response, (2) correct numerator, but incorrect denominator, 

(3) correct denominator, but incorrect numerator, and (4) 

incorrect numerator and incorrect denominator.  The order of 

the answer choices was counterbalanced across question 

trials. 
 
 

 
 

 Figure 1: Example of labeling a proportion with a 

fraction from the training phase (Generic condition on 

left, Concrete condition on right). 

 

 

 

The second phase of the experiment was a transfer task in 

which participants were given 24 multiple-choice questions 

involving novel objects. For half of the participants the 

transfer test was given immediately after phase 1 (i.e. 

training and testing of learning) and for the other half of 

participants the transfer test was given two weeks after 

phase 1.  Twelve questions presented a collection of objects 

and participants selected a fraction that described a specified 

proportion of the objects (see Figure 2); the other twelve 

questions presented a fraction and participants selected a 

corresponding collection of objects that showed a proportion 

matching the fraction (see Figure 3). For each question, there 

were four possible response choices, as described for the 

training questions. The questions involved proportions with 

denominators (i.e. total number of items in a display) ranging 

from 2 to 10.  Many different items were used for response 

choices and included: red and blue cars, blue and green 

shoes, red and green fish, green and red bugs, bears with 

and without flags, cupcakes with and without sprinkles, 

slices of pizza (present or missing), light windows and dark 

windows of a house, partially full bus seats, partially full 

pencil box, partially full paint bucket and partially 

remaining chocolate bar.  

Procedure   All training and test questions were presented on 

the computer.  During training, the experimenter gave a 

definition of proportion and explained that fractions can 

describe proportions. For example, in the Generic condition 

when showing the example of 2/5 (see Generic condition of 

Figure 1), the experimenter stated while gesturing to the 

circles, “The proportion of black circles in this group is 2/5 

because there are five circles all together, 1, 2, 3, 4, 5, and 

two of them are black, 1, 2”.  Explanations in the Concrete 

condition were completely isomorphic to those of the 

Generic condition.  Participants proceeded through the test 

questions at their own pace.  The experimenter recorded their 

responses through the computer.   

 

  
 

Figure 2: Example of a transfer test question for which 

participants needed to choose a fraction that matched the 

proportion shown. 
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Figure 3: Example of a transfer test question for which 

participants needed to choose a proportion that matched 

the fraction shown. 

 

Results  

 

Two participants, one from the Concrete Delayed condition 

and one from the Generic Immediate condition, were 

removed from the analysis because their learning scores were 

more than 2.5 standard deviations below the mean score in 

their conditions.   

In both the Concrete and Generic conditions, children 

successfully learned.  Learning scores in both conditions were 

well above a chance score of 25% (see Figure 4), one-sample 

t-tests, ts > 18.0, ps < 0.001.  However, participants in the 

Generic condition scored significantly higher than those in 

the Concrete condition (M = 92.1%, SD = 10.1% for Generic 

and M = 81.2%, SD = 17.7% for Concrete), independent 

samples t-test, t(60) > 2.93, p < .006, Cohen’s d = .752 

Transfer test scores were also above chance in both 

learning conditions (Concrete and Generic) and transfer test 

time conditions (Immediate and Delayed) (see Figure 4), one-

sample t-tests ts > 13.0, ps < 0.001.  However, there was a 

significant difference in transfer scores between the learning 

conditions on the immediate transfer test, independent 

samples ts(29) > 2.39, p < .024, Cohen’s d = .895.  

Participants in the Generic condition scored higher than those 

in the Concrete condition. The difference in transfer scores 

attenuated considerably on the delayed transfer test, 

independent samples t(29) = .704, p = .487, Cohen’s d = .200.  

An analysis of variance was performed with transfer test 

score as the dependent variable, learning condition and 

transfer test time as fixed factors and learning score as a 

covariate. The results reveal a significant effect of learning 

score, F(1, 57) = 24.2, p < .001, p
2
 = .298, and no significant 

effect of learning condition, F(1, 57) = .366, p = .548, and  no 

effect of transfer time, F(1, 57) = .815, p = .371. There was a 

moderate interaction between learning condition and transfer 

time F(1, 57) = 2.90, p = .094 (see Figure 4). For both 

immediate and delayed testing, transfer scores were  
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Figure 4: Mean Test Scores (% Correct). 
Note: Error bars represent standard error of mean.   

Chance score is 25%. 

 

positively correlated with learning scores, Pearson 

Correlations, r(29) = .600, p < .001 and r(29) = .554, p < .002 

respectively. These findings suggest that transfer is a function 

of learning such that higher levels of learning result in higher 

levels of transfer.   

Taken together the results of this experiment suggest that 

learning basic fraction knowledge from a concrete 

instantiation, in comparison to a more generic instantiation, 

can hinder initial learning which may in turn hinder 

subsequent transfer to novel material. With time, the negative 

effect of concreteness on transfer appears to be attenuated.  

General Discussion 

This research considered first-grade children’s ability to 

acquire basic knowledge of the concept of fraction.  

Participants were instructed on how to label proportions of 

objects with fractions. Instruction presented proportions 

either through generic black and white shapes or through 

colorful, familiar objects. Participants were tested on their 

ability to label proportions of novel objects with fractions. 

Participants who received instruction with either type of 

material successfully learned and applied their knowledge to 

novel objects.  However, those who were instructed with the 

generic instantiation scored 10% higher on tests of learning 

and immediate transfer to novel objects than those who were 

instructed with the concrete instantiation.  The difference in 

transfer scores due to instruction with the concrete versus 

generic learning material diminished when the transfer test 

was delayed for two weeks.  Yet both immediate and 

delayed transfer test scores were strongly correlated with 

learning scores.   

The results of this study support the hypothesis that 

concreteness of the learning material can hinder children’s 

acquisition of mathematical knowledge.  In particular, it 

appears that instruction involving concrete instantiations of 

proportions hinders initial learning and consequently 

hinders subsequent transfer in comparison to instruction 

involving generic instantiations of proportion. Instruction of 

basic fraction notation using generic material may help 

students gain a solid knowledge foundation which may in 
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turn benefit them when learning more advanced 

mathematical concepts involving fractions.  Although 

concrete instantiations are often colorful and visually 

appealing, bland, generic instantiations are learnable by 

children and can offer an advantage for learning and 

subsequent transfer of mathematical knowledge.   

These findings suggest that although aspects of executive 

function, including the ability to control attentional focus 

and inhibit irrelevant information, mature considerably in 

the preschool years, extraneous information included in 

concrete educational material may be difficult for 

elementary school children to ignore.  Learning of 

mathematical concepts may be hindered because less 

attentional resources have been allocated to the relevant to-

be-learned relations.  

With respect to actual pedagogical practice, mathematics 

instruction is generally not limited to using only one 

instantiation of a concept and frequently involves multiple 

instantiations, including formal symbolization as well as 

familiar contextualization.  Concrete and abstract 

instantiations of mathematical may both have advantages. 

However, it is not clear a priori when and how to include 

concrete instantiations and generic instantiations in 

instruction. For example, there appears to be a trade-off 

between grounded, concrete instantiations and abstract, 

symbolic instantiations when solving algebra problems 

where grounded, concrete formats facilitate solving simple 

problems and abstract, symbolic formats facilitate solving 

more complex problems (Koedinger, Alibali, & Nathan, 

2008; Koedinger & Nathan, 2004).  The results of the 

present study provide evidence of an advantage for generic 

material for acquiring knowledge of basic fraction notation.  

The challenge for researchers and educators is to develop a 

theoretical basis for the timing and use of both concrete and 

generic instantiations in instruction of mathematical 

concepts in general.  
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